The oxidation of the porous click here silicon matrix to silica decreases the effective refractive index, which causes a hypsochromic shift in the position of the maximum reflectance peak in the spectrum,
and the dissolution of the porous layer can both decrease the thickness of the layer and increase the porosity, both processes leading to a reduction in the effective optical thickness. Therefore, the shifts in the Fabry-Perot interference fringe pattern observed in the visible reflectance spectra and the wavelength of the rugate peak maximum can be used to measure and compare the stability of different porous Si samples. The effective optical thickness of porous silicon samples can be obtained in real time using a fast Fourier transform of the reflectance spectra [1, 31]. One strategy to then compare the degradation of different porous Si surface samples
in aqueous media involves calculating the relative change in effective optical thickness defined as (2) where EOT0 is the value Copanlisib research buy of EOT (Equation 2) measured when the porous Si surface is initially exposed to flowing buffer. The degradation of the pSi surface is then monitored by this relative decrease in optical thickness [32]. The degradation of the two porous Si sample types in the present study as measured by EOT changes is shown Figure 6. The data indicate that the stability of these samples decreases in the sequence: freshly etched porous Si > chitosan-coated pSi, since the initial rates of relative EOT change during the degradation are 0.217 and 0.37%/min, respectively. The degradation rate is higher for porous silicon coated by chitosan than for fresh pSi for the first 25 min, but there is a subsequent decrease in the degradation rate of the chitosan-coated sample so that at later times it degrades more slowly than fresh porous silicon, with relative EOT changes of 0.066 and 0.108%/min, respectively. The increased rate of degradation for the chitosan-coated porous silicon sample Thiamine-diphosphate kinase is in apparent contrast to the previously reported studies of chitosan-coated
porous silicon, however, those studies used hydrosilylated porous silicon or oxidized porous silicon [5, 23, 24]. The increased degradation of pSi-ch compared even to freshly etched porous silicon may be due to the amines present in chitosan, since amines can increase the rate of porous silicon hydrolysis [33, 34]. It also suggests that the chitosan layer contains cracks or fissures such that the aqueous solution readily selleck chemicals infiltrates to the underlying fpSi layer. Figure 6 EOT changes observed during the degradation of the two porous Si sample types. Plots showing the relative change in the effective optical thickness (EOT) of the pSi samples as a function of time exposed to 1:1 (v/v) 0.5 M carbonate/borate buffer (pH 10), ethanol at 20 ± 1°C.