Moreover, for different wire diameters, no significant change in

Moreover, for different wire diameters, no significant change in the emission wavelength has been measured. It www.selleckchem.com/products/AG-014699.html can be explained by the quite large thickness and low density of the wires compared to MBE samples where

the In incorporation in the MQWs has been shown to vary strongly for a small diameter (140 to 270 nm for the 400-nm period) [22]. Figure 4 Electroluminescence measurements. Electroluminescence spectra of a single InGaN/GaN core-shell wire LED structure measured at 300 K with a metallic tip (> 20 V) for 2, 10, 25, 40 and 60 μA. The inset shows a schematic view of the contact. Conclusions In summary, we have shown the possibility to grow self-assembled vertically aligned GaN wires on the Si (111) substrate using a thin AlN intermediate layer. The epitaxial relationship of the GaN wires/AlN/Si (111) has been studied by XRD and GIXRD. As shown by HRTEM observations and in agreement with literature, the high growth temperature of AlN Bindarit molecular weight leads to the formation of an amorphous (or nanocrystallized) SiN x layer between the Si and the AlN that does not affect the epitaxial relationship. The wires were then used as templates for the growth of a complete LED structure, and the electrical continuity between the Si substrate

and the n-GaN wire core allows the injection of electrons in the structure using a backside contact. A violet electroluminescence at 420 nm of single wires has been demonstrated and provides a low cost wire-based LED alternative for optoelectronic devices on Si when the voltage threshold will be reduced. Acknowledgments The authors thank the French

BM32 beamline staff of the ESRF synchrotron, V. Favre-Nicolin for the scientific discussion and J. Dussaud for the technical help. This work has been funded in part by the French government ANR Sincrone and Carnot Eclairage projects. References 1. Dong Y, Tian B, Kempa TJ, Lieber CM: Coaxial group III-nitride nanowire photovoltaics. Nano Lett 2009, 9:2183–2187.CrossRef 2. Qian F, Gradecak S, Li Y, Wen CY, Lieber CM: Core/multishell nanowire heterostructure as multicolour, high-efficiency light-emitting diodes. Nano Lett 2005, 5:2287–2291.CrossRef 3. Qian F, Li Y, Gradecak S, Park HG, Dong Y, Ding Y, Wang ZL, Lieber CM: Multi-quantum-well nanowire heterostructures for learn more wavelength-controlled Dichloromethane dehalogenase lasers. Nat Mater 2008, 7:701–706.CrossRef 4. Dobrokhotov V, McIlroy DN, Grant Norton M, Abuzir A, Yeh WJ, Stevenson I, Pouy R, Bochenek J, Cartwright M, Wang L, Dawson J, Beaux M, Berven C: Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys 2006, 99:104302.CrossRef 5. Jacopin G, De Luna Bugallo A, Levenus P, Rigutti L, Julien FH, Zagonel LF, Kociak M, Durand C, Salomon D, Chen XJ, Eymery J, Tchernycheva M: Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells. Appl Phys Express 2012, 5:014101.CrossRef 6.

Comments are closed.