“Proteomic and transcriptomic analyses using the growing r


“Proteomic and transcriptomic analyses using the growing resources of genomic information have been applied to identification of macromolecules in exudates collected from phloem. Most of the analyses rely on collection of exudate following incisions made to the vasculature, but some limited data are available for exudates collected from excised aphid stylets. Species examined, AG-120 price to date, include a number of cereals (rice, barley, and wheat), a number of cucurbits, castor bean, members of the genus Lupinus, brassicas, and Arabidopsis.

As many as 1,100 proteins, some hundreds of transcripts, and a growing number of small ribonucleic acids (RNAs), including micro-RNAs, have been identified across the species with a high degree of commonality. Questions relating to the nature and extent of contamination of

sieve element contents with those of surrounding companion cells and nonvascular cells are addressed together with likely functions of identified macromolecules. The review considers likely translocation and systemic signaling functions among the macromolecular inventory of phloem exudates.”
“Vibrio parahaemolyticus is a major pathogen that is mainly associated with seafood and is a global food safety issue. Our objective was to isolate and completely sequence a specific phage against this bacterium. Phage vB_VpaM_MAR is able to lyse 76% of the V. parahaemolyticus strains tested. MAR belongs to the Myoviridae family and has a genome comprised of double-stranded DNA with a size of 41,351 bp, a G+C content of 51.3%, and 62 open reading find more frames (ORFs). Bioinformatic analysis showed that phage MAR is closely related to Vibrio phages VHML, VP58.5, and VP882 Obeticholic Acid order and Halomonas aquamarina phage Phi HAP-1.”
“Society is fundamentally ambivalent to the use of plastics. On the one hand, plastics are uniquely flexible materials that have seen them occupy a huge range of functions, from simple packing materials to complex engineering components.

On the other hand, their durability has raised concerns about their end-of-life disposal. When that disposal route is landfill, their invulnerability to microbial decomposition, combined with relatively low density and high bulk, means that plastics will occupy increasing amounts of landfill space in a world where available suitable landfill sites is shrinking. The search for biodegradable plastics and their introduction to the marketplace would appear to be a suitable amelioration strategy for such a problem. And yet the uptake of biodegradable plastics has been slow. The term biodegradable itself has entered public controversy, with accidental and intended misuse of the term; the intended misuse has led to accusations and instances of ‘greenwashing’. For this and other reasons standards for biodegradability and compostability testing of plastics have been sought.

Comments are closed.