CRP-cAMP directly regulates the ompR-envZ Trichostatin A price operon in E. coli through the process of binding to a single site within the upstream region of ompR [15]. Four transcripts EPZ004777 were detected for the ompR-envZ operon, while CRP-cAMP negatively regulates the two promoters that overlap the CRP binding site and is positive for the other two that are located
further downstream from this site [15]. Thus, CRP-cAMP controls the production of porins indirectly through its direct action on ompR-envZ in E. coli. In contrast, Y. pestis has evolved a distinct mechanism, wherein CRP-cAMP has no regulatory effect on the ompR-envZ operon; rather, consistent with the findings reported here, it directly stimulates ompC and ompF, while repressesing ompX. Regulation of ompX by CRP through the CyaR small RNA has been established in both Salmonella enterica [35] and E. coli [36, 37]; the CRP-cAMP complex is a direct activator of the transcription of CyaR, which further promotes the decay of the ompX mRNA, under conditions in which the cAMP levels are high. Transcription of the P1 promoter of the E. coli proP gene, which encodes a transporter of osmoprotectants (proline, glycine betaine, and other osmoprotecting compounds) is strongly induced by a shift from low to high osmolarity
conditions [38, 39]. CRP-cAMP functions as an osmosensitive repressor of the proP P1 transcription through CRP-cAMP-promoter DNA association [38, 39]. The proP P2 promoter is induced upon entry into the stationary phase to protect cells from osmotic shock; the CRP-cAMP and Fis regulators synergistically coactivate the P2 promoter activity, through independently Selleck GSK1838705A binding to two distinct P2 promoter-proximal regions and making contacts with the two different C-terminal domains of the a subunit of RNA polymerase [40]. These findings suggest that CRP-cAMP functions in certain contexts in osmoregulation of gene expression, in addition to its role in catabolite control. Remodeling of regulatory circuits of porin genes The evolutionary remodeling of regulatory circuits can bring about phenotypic differences
between related organisms [41]. This is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. A set of newly acquired virulence genes (e.g., pla and the pH6 antigen genes) in Y. pestis has evolved to integrate themselves into the ‘ancestral’ MycoClean Mycoplasma Removal Kit CRP or RovA regulatory cascade [16, 18, 42]. The PhoP regulons have been extensively compared in Y. pestis and S. enterica [41, 43]. The orthologous PhoP proteins in these bacteria differ both in terms of their ability to promote transcription and in their role as virulence regulators. The core regulon controls the levels of active PhoP protein and mediates the adaptation to low Mg2+ conditions. In contrast, the variable regulon members contribute species-specific traits that allow the bacteria to incorporate newly acquired genes into their ancestral regulatory circuits [41, 43]. In general, Y.