In this comparative genome microarray study these two insertions

In this comparative genome microarray study these two insertions were present in some isolates of the same serovar and absent in other isolates of the same serovar. The authors suggest the phage insertion might be a putative pathogenicity island. Although the Cā€‰+ā€‰G content of the insertion is less than 1% higher than the rest of the genome,

Momynaliev and colleagues [34] found that GCGC and CGCG tetranucleotides, that are present in ureaplasma DNA fragments, were missing in the inserted DNA fragment, thus providing another clue of the foreign character of the inserted DNA fragment. Examining the putative restriction-modification (RM) genes in the 14 serovars (Additional file 3: Table S3) suggests that, although each serovar has from six to twelve RM genes, most RM systems are incomplete. Maraviroc manufacturer Serovars 3, 5, 7, 8, 10, and 11 may have a complete type III RM system, serovar 9 may have a complete type I and type II RM system, whereas serovars 1, 14, 2, 12, and 13 appear to have only remnants of RM systems. It appears that all serovars have orthologs of the hsd specificity and/or methylation subunits belonging to the type I RM system. In all serovars, except UPA3 and UPA14, these orthologs are most similar to the hsd genes of Mycoplasma pulmonis, which are phase variable [35ā€“37]. We found evidence of rearrangement of a pair of hsdS genes in the

Staurosporine mouse unfinished genome of UPA1. On the UPA1 main contig (gcontig_1106430400171, 734075nt) the two genes were adjacent and oriented in opposite directions, whereas on a small contig (gcontig_1106430400162, 2207nt), which contained only these two genes, the genes are adjacent and oriented in the same direction. Further investigation is necessary

to determine whether these RM genes indeed phase- vary and what before is the mechanism for their phase-variation. RM systems are used in general by organisms to protect themselves from foreign DNA like viruses. Although phages that infect ureaplasmas have not been reported, the existence of these RM systems, as well as the presence of either intact or remnants of RM systems in the other urogenital mycoplasmas M. genitalium and M. hominis suggests that there are phages that infect these obligate parasites. In organisms like Chlamydia spp., which are obligate intracellular parasites and have no identifiable infecting viruses, there are no functional RM systems [38]. Potential pathogenicity genes Phospholipase C, A1, A2 Phospholipase C, A1, and A2 (PLC, PLA1, PLA2) activity was reported in Ureaplasma serovars 3, 4, and 8 by DeSilva and Quinn [20, 21, 23]. It is important to note that the assay used by DeSilva measures combined activity of PLC and phospholipase D (PLD) because both cleavage products are in the soluble fraction and the radioactively labeled hydrogen would be found in both cleavage products [39].

Comments are closed.