Interestingly, it was observed that SIAH-1 levels increased slightly during S-G2-M phases. SIAH-1 mediates Kid/KIF22 degradation via the ubiquitin-proteasome pathway and the balance between synthesis and degradation of these proteins influences the correct achievement of mitosis [3]. In the present study we observed a deregulation of both SIAH-1 INK 128 in vivo and Kid/KIF22 proteins in tumor breast tissues, changing from a localized expression to a more diffuse pattern throughout the cell. Kid/KIF22 showed a different expression pattern in tumors compared to the normal tissue counterparts. Interestingly, in normal cells the protein was mostly localized in perinuclear
areas whilst in malignant cells the expression was more diffuse and the punctuate staining pattern was mostly nuclear, possibly related to increased mitotic activity of these cells. In both the normal and tumor tissues we observed a similar cellular distribution pattern of both SIAH-1 and Kid/KIF22 staining consistent with previously described interaction and functional regulation between these two proteins. The mRNA level of SIAHs and Kid/KIF22
showed an important variation among analyzed samples. In samples from the same patient, in most cases, SIAH-1 mRNA was down-regulated in tumoral breast tissues compared to surrounding normal breast tissues. Similar results about SIAH-1 expression have been reported in hepatocellular carcinomas [26, 35], indicating that SIAH-1 mRNA expression is frequently reduced in malignant tissues compared to normal tissues. Matsuo et al. [26] observed that SIAH-1 was down-regulated in the majority of HCCs analyzed by from semiquantitative eFT508 order RT-PCR, and SIAH-1 was not up-regulated in any of the cancerous tissues studied. It was also described using semiquantitative RT-PCR that SIAH-1 expression was lower in six hepatoma cell lines, compared to normal liver tissue [35]. Our study underlines the importance of relating the results of gene expression obtained by qRT-PCR to protein expression and the patterns of subcellular localization. Given its structural similarity and possible
redundant function with SIAH-1 we also analyzed the expression of SIAH-2 mRNA in our samples (data not shown). Although the median of mRNA copies of SIAH-2 was higher in normal than in tumour breast tissues, its expression was only decreased in half of tumour tissues compared to its normal counterpart. These different profiles suggest that pathways implicated in the control of the expression of these two members of the SIAH family could be different. Kid/KIF22 mRNA expression showed also important differences among the samples. However, more interesting was the observed correlation between Kid/KIF22 mRNA selleck compound variations between normal and tumor tissues when compared to SIAH-1 mRNA variations suggesting an additional regulation step at the level of gene transcription for these two interlinked proteins, in addition to the previously established mechanisms for protein stability.