“
“Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together RAD001 in vitro with occurrence on a variety of less common substrata (marine
invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the
complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding NVP-BEZ235 concentration of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus. “
“The genomes of two novel Dehalococcoides mccartyi strains, DCMB5 and BTF08, enriched from the heavily organohalide-contaminated megasite around Bitterfeld (Germany), were fully sequenced and annotated. Although overall similar, the genome sequences of the two strains reveal remarkable differences in their genetic content, reflecting a specific adaptation to the contaminants at the field sites from which they
were enriched. The genome of strain BTF08 encodes for 20 reductive dehalogenases, and is the first example of a genome containing all three enzymes that are necessary to couple the complete reductive dechlorination of PCE to ethene to growth. The genes encoding trichloroethene and vinyl chloride reductive dehalogenases, tceA and vcrA, are why located within mobile genetic elements, suggesting their recent horizontal acquisition. The genome of strain DCMB5 contains 23 reductive dehalogenase genes, including cbrA, which encodes a chlorobenzene reductive dehalogenase, and a gene cluster encoding arsenic resistance proteins, both corresponding to typical pollutants at its isolation site. “
“Proteins on the cellular surface of a bacterium, its surfaceome, are part of the interface between the bacterium and its environment, and are essential for the cells response to its habitat. Methylococcus capsulatus Bath is one of the most extensively studied methane-oxidizers and is considered as a model-methanotroph. The composition of proteins of the surfaceome of M.