Nanotechnology 2011, 22:485203.CrossRef 31. Zhou Q, Zhai J: The improved resistive switching properties of TaO x -based
RRAM devices by using WN x as bottom electrode. Physica B: Condensed Matter 2013, 410:85.CrossRef 32. Wu Y, Lee B, Wong HSP: Al 2 O 3 -based RRAM using atomic layer deposition (ALD) with 1-μA RESET current. IEEE Electron Device Lett 2010, 31:1449.CrossRef 33. Banerjee W, Maikap S, Lai CS, Chen YY, Tien TC, Lee HY, Chen WS, Chen FT, Kao MJ, Tsai MJ, Yang JR: Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrO x nano-dots. Nanoscale Res Lett 2012, 7:194.CrossRef 34. Cheng CH, Chin A, Yeh FS: Stacked GeO/SrTiO x resistive memory with ultralow resistance currents. Appl Phys Lett 2011, 98:052905.CrossRef VX-770 price 35. Rahaman SZ, Maikap S, Chen WS, Lee HY, Chen FT, Kao MJ, Tsai MJ: Repeatable unipolar/bipolar resistive memory characteristics and switching mechanism using a Cu nanofilament in a GeO x film. Appl Phys Lett 2012, 101:073106.CrossRef 36. Wang Z, Zhu WG, Du AY, Wu L, Fang Z, Tran XA, Liu WJ, Zhang KL, Yu HY: Highly find more uniform, self-compliance, and forming-free ALD HfO 2 –based RRAM with Ge doping. IEEE Trans Electron Devices 2012, 59:1203.CrossRef 37. Xiao S, Andersen DR, Yang W: Design
and analysis of nanotube-based memory cells. Nanoscale Res Lett 2008, 3:416.CrossRef 38. Bartolomeo AD, Yang Y, Rinzan MBM, Boyd AK, Barbara P: Record endurance for single-walled carbon nanotube–based memory click here cell. Nanoscale Res Lett 1852, 2010:5. 39. Su CJ, Su TK, Tsai TI, Lin HC, Huang TY: A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires. Nanoscale Res Lett 2012, 7:162.CrossRef 40. Ohta A, Nakagawa H, Murakami H, Higashi S, Miyazaki S: Photoemission study of ultrathin GeO 2 /Ge heterostructures formed by UV–O 3 oxidation. e-J Surf Sci Nanotech 2006, 4:174.CrossRef 41. Majumdar S, Mandal S, Das AK, Ray SK: Synthesis and temperature dependent photoluminescence properties of Mn doped Ge nanowires. J Appl Phys 2009, 105:024302.CrossRef 42. Wu XC, Song WH, Zhao B, Sun
YP, Du JJ: Preparation and photoluminescence properties of crystalline GeO 2 nanowires. Chem Phys Lett 2001, 349:210.CrossRef 43. The interactive Ellingham diagram [http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php] selleck products 44. Kinoshita K, Tsunoda K, Sato Y, Noshiro H, Yagaki S, Aoki M, Sugiyama Y: Reduction in the reset current in a resistive random access memory consisting of NiO x brought about by reducing a parasitic capacitance. Appl Phy Lett 2008, 93:033506.CrossRef 45. Sze SM: Semiconductor Devices: Physics and Technology. New York: Wiley; 2008. 46. Crupi F, Degraeve R, Groeseneken G, Nigam T, Maes HE: On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers. IEEE Trans Electron Devices 1998, 45:2329.CrossRef 47.