On the other hand, degradation of the circular plasmid pHZ209, as shown by the relative intensities of the linearized pHZ209, appeared to be more intense from XTG2 than from 1326. Almost all VX-689 research buy the circular plasmid pHZ209 from XTG2 was degraded as linearized forms, but only about two-thirds of the circular plasmid pHZ209 from 1326 was linearized (Fig. 4B). Rescue of the Dnd phenotype of dnd mutants by complementation The first direct evidence that the Dnd phenotype, reflecting DNA phosphorothioation, involves the combined action of five independent proteins
(DndA-E) comes from complementation experiments using plasmids expressing individual Dnd proteins. This was achieved by the construction of individual dnd gene expression plasmids using pHZ1272 [18], an E. coli-Streptomyces shuttle expression vector derived from pIJ6021 with a strong thiostrepton-inducible selleck products P tipA promoter [19]. Firstly, DNA fragments carrying individual dndA-E genes were cloned in-frame
into pHZ1272 to generate expression plasmids (pJTU2001, carrying dndA; pJTU81, carrying dndB; pJTU86, carrying dndC; pJTU64, carrying dndD; and pJTU65, carrying dndE). Secondly, the expression plasmids were independently introduced by transformation into the corresponding mutant strains XTG1, 2, 3, 4, and 5 (with in-frame-deletions of dndA, B, C, D, and E, respectively). Even without induction of the P tipA promoter by addition of thiostrepton, strains XTG1, 3, 4, 5 carrying their counterpart expression plasmids recovered the Dnd phenotype of the VEGFR inhibitor wild-type strain 1326 (Dnd+), while XTG2 carrying pJTU81 (with a complete dndB gene) abolished enhanced Dnd acetylcholine phenotype (Dnd+) with recovery of the original Dnd
phenotype (Dnd+) comparable with that of the wild-type strain 1326 (Fig. 4C). As additional evidence, we cloned dndD into pET15b to obtain an expression plasmid (pHZ2893) for the production of an N-terminal His-tag fusion protein. The purified DndD protein was then used for the production of rabbit anti-DndD polyclonal antibody. When we used this antibody to detect native DndD protein expression, we observed identical bands with a size of 74.6 KD in the expression strain XTG4/pJTU64, and wild-type S. lividans 1326 (Fig. 5). As a negative control, a 1326 derivative with complete deletion of the dnd gene cluster (HXY6) produced no signal in the corresponding position (Fig. 5). The protein size agrees well with our transcriptional analysis mentioned earlier and the DndD protein was correctly expressed in the complemented strain XTG4/pJTU64 (Fig. 5). Figure 5 Western blotting for detecting expression of Dnd proteins in S. lividans 1326 and derivative strains. Rabbit polyclonal antibody to DndD reacted with the protein extracted from wild-type S. lividans 1326 or strain XTG4/pJTU64 (a pHZ1272-derived dndD expression vector). These results suggest that all of the mutations in XTG1–5 are dnd-specific and the Dnd proteins are correctly expressed in vivo.