The exercise conditions that can induce muscle damage are unaccustomed exercise and exercise with higher intensity or longer duration than those to which the subject is adapted [38, 39]. Because a high number of concentric and, particularly, eccentric contractions are performed during long-distance running, the symptoms of muscle damage are usually observed immediately and a few days after a running bout even in experienced runners [40]. Our participants
included running exercise in their daily regular physical activity, and this may explain the modest increase Enzalutamide in vitro in CK activity compared to Hou et al. [21] data. An unaccustomed running duration may be the main reason for changes in CK activity and muscle power in our participants. The key components of DMW contributing to the observed ergogenic benefits are not known. In our study, the calcium–magnesium–sulfate DMW was taken from a depth of about 700 m
and is characterized by enriched LY294002 cost contents of boron, phosphorus, chromium, manganese, iron, and copper. Hou et al. [21] speculated that the effect of deep ocean water on accelerating recovery after fatigue may be associated with the attenuation of exercise-induced muscle damage. It has been found that the main supplements that seem to protect against muscle damage are the flavonoids, which are known for their efficient anti-inflammatory and antioxidant properties [41]. Howatson et al. [42] reported that runners who consumed Tolmetin tart cherry juice for 5 days before and 48 h after a marathon showed faster recovery of muscle
strength and reduced inflammation [42]. However DMW used in our study as well as deep ocean water do not contain such components. Possibly the minerals and trace elements in DMW may work cooperatively to restore normal human performance. Snell et al. [19] reported that recovery was significantly faster when consuming a rehydration drink containing fructose, glucose polymer, calcium, magnesium, sodium, potassium, amino acids, thiols, and vitamins compared with Crystal Light, while replenishment with Gatorade, which contains fructose, glucose, sodium and potassium [20]. It is possible that the different effects on performance between a rehydration drink and Gatorade may be associated with higher concentration of calcium and magnesium in the rehydration drink. This may explain the better recovery of performance in our study in the DMW trial because DMW is rich in calcium and magnesium. In animals, a lack of dietary magnesium leads to increased free radical production [43], and magnesium supplementation eliminates free radical production induced by ischemia– reperfusion [44] and alcohol consumption [45]. Serum magnesium concentration and dietary magnesium intake are known correlates of muscle strength [46, 47]. It has been recently shown that magnesium enhances glucose availability in the peripheral and central systems and increases lactates clearance in the muscle during exercise in rats [48]. Hou et al.