The proliferation of the DO11·10 hybridoma cell line transfectant

The proliferation of the DO11·10 hybridoma cell line transfectants expressing SOCS-3 mRNA is also inhibited by stimulation of specific antigens, which confirms EPZ015666 order that IL-2 can inhibit T lymphocyte immunity through up-regulating the expression of SOCS-3 mRNA. However, SOCS-3 proteins, not mRNA, have the same effect in lymphocytes, and it would be interesting to perform this at proteic level on primary lymphocyte cells. SOCS-3

is a critical negative feedback regulatory factor of the JAK/STAT signalling transduction pathway, which plays a critical negative regulatory role in maintaining the balance of immunity. It has been shown that SOCS-3 can inhibit the proliferation of lymphocyte lines to the stimulation of specific antigens [16,19,22,24]. However, inhibition of the proliferation

of allogeneic lymphocytes with allogeneic antigen stimulation has not been reported. In this study, our results showed that the proliferation of B6 naive CD4+ T cells inducibly expressing SOCS-3 mRNA by IL-2 to the stimulation of allogeneic antigen was inhibited, suggesting the possibility of the initial inhibition of aGVHD. Further studies also demonstrated that the Th1-type polarization of B6 naive CD4+ T cells inducibly expressing SOCS-3 mRNA by IL-2 to the stimulation of allogeneic antigen was inhibited. These results support further that B6 naive CD4+ T cell inducibly expressing SOCS-3 mRNA by IL-2 could inhibit aGVHD, but selleck chemicals we do not know whether B6 naive CD4+ T cell transfectants expressing SOCS-3 can inhibit aGVHD. This will need further study. These results will help us to understand the mechanisms of the inhibitory effect on aGVHD. We hypothesized that whether Dichloromethane dehalogenase IL-2 signalling promotes or inhibits immunity might be related to the state of the CD4+ T cell. If the target cells of IL-2 signalling are activated CD4+ T cells, which express the high-affinity IL-2 receptor (IL-2R) with IL-2Rα (CD25), the IL-2 signal activates the JAK/STAT signalling

transduction pathway after IL-2 binds with high-affinity IL-2R. At the same time, down-regulation of SOCS-3 expression induced by antigen-TCR-mediated signals attenuates inhibition to the JAK/STAT signalling transduction pathway [16]. Activation of the JAK/STAT signalling transduction pathway leads to STAT phosphorylation and activation of genetic transcription, which can drive T cell proliferation and promote immunity. If the target cells of IL-2 signalling are naive CD4+ T cells which express low-affinity IL-2R without IL-2Rα (CD25), but with IL-2Rβ and IL-2Rγ, the IL-2 signal up-regulates expression of the negative feedback regulatory factor SOCS-3 when IL-2 binds with low-affinity IL-2R. Up-regulation of SOCS-3 expression can enhance inhibition to the JAK/STAT signalling transduction pathway and inhibit STAT phosphorylation and genetic transcription. This leads to the inhibition of T cell proliferation and immunity.

Comments are closed.